We investigate the details of the electronic structure in the neighborhoods of a carbon atom vacancy in graphene by employing magnetization-constrained density-functional theory on periodic slabs, and spin-exact, multireference, second-order perturbation theory on a finite cluster. The picture that emerges is that of two local magnetic moments (one ? -like and one ? -like) decoupled from the ? band and coupled to each other. We find that the ground state is a triplet with a planar equilibrium geometry where an apical C atom opposes a pentagonal ring. This state lies ~0.2 eV lower in energy than the open-shell singlet with one spin flipped, which is a bistable system with two equivalent equilibrium lattice configurations (for the apical C atom above or below the lattice plane) and a barrier ~0.1 eV high separating them. Accordingly, a bare carbon atom vacancy is predicted to be paramagnetism can be accommodated if binding to foreign species, a spin-1 paramagnetic species, but spin-1/2 ripples, coupling to a substrate, or doping are taken into account.

Spin coupling around a carbon atom vacancy in graphene

2013

Abstract

We investigate the details of the electronic structure in the neighborhoods of a carbon atom vacancy in graphene by employing magnetization-constrained density-functional theory on periodic slabs, and spin-exact, multireference, second-order perturbation theory on a finite cluster. The picture that emerges is that of two local magnetic moments (one ? -like and one ? -like) decoupled from the ? band and coupled to each other. We find that the ground state is a triplet with a planar equilibrium geometry where an apical C atom opposes a pentagonal ring. This state lies ~0.2 eV lower in energy than the open-shell singlet with one spin flipped, which is a bistable system with two equivalent equilibrium lattice configurations (for the apical C atom above or below the lattice plane) and a barrier ~0.1 eV high separating them. Accordingly, a bare carbon atom vacancy is predicted to be paramagnetism can be accommodated if binding to foreign species, a spin-1 paramagnetic species, but spin-1/2 ripples, coupling to a substrate, or doping are taken into account.
2013
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/250077
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? ND
social impact