The epitaxial growth and the electrical resistance of multilayer silicene on the Ag(111) surface has been investigated. We show that the atomic structure of the first silicene layer differs from the next layers and that the adsorption of Si induces the formation of extended silicene terraces surrounded by step bunching. Thanks to the controlled contact formation between the tips of a multiple probe scanning tunneling microscope and these extended terraces, a low sheet resistance, albeit much higher than the electrical resistance of the underlying silver substrate, has been measured, advocating for the electrical viability of multilayer silicene
Synthesis and electrical conductivity of multilayer silicene
2014
Abstract
The epitaxial growth and the electrical resistance of multilayer silicene on the Ag(111) surface has been investigated. We show that the atomic structure of the first silicene layer differs from the next layers and that the adsorption of Si induces the formation of extended silicene terraces surrounded by step bunching. Thanks to the controlled contact formation between the tips of a multiple probe scanning tunneling microscope and these extended terraces, a low sheet resistance, albeit much higher than the electrical resistance of the underlying silver substrate, has been measured, advocating for the electrical viability of multilayer siliceneI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.