We study a two-state statistical process with a non-Poisson distribution of sojourn times. In accordance with earlier work, we find that this process is characterized by aging and we study three different ways to define the correlation function of arbitrary age of the corresponding dichotomous fluctuation. These three methods yield exact expressions, thus coinciding with the recent result by Godrèche and Luck J. Stat. Phys. 104 489 (2001)]. Actually, non-Poisson statistics yields infinite memory at the probability level, thereby breaking any form of Markovian approximation, including the one adopted herein, to find an approximated analytical formula. For this reason, we check the accuracy of this approximated formula by comparing it with the numerical treatment of the second of the three exact expressions. We find that, although not exact, a simple analytical expression for the correlation function of arbitrary age is very accurate. We establish a connection between the correlation function and a generalized master equation of the same age. Thus this formalism, related to models used in glassy materials, allows us to illustrate an approach to the statistical treatment of blinking quantum dots, bypassing the limitations of the conventional Liouville treatment.

Correlation function and generalized master equation of arbitrary age

Paolo Grigolini;
2005

Abstract

We study a two-state statistical process with a non-Poisson distribution of sojourn times. In accordance with earlier work, we find that this process is characterized by aging and we study three different ways to define the correlation function of arbitrary age of the corresponding dichotomous fluctuation. These three methods yield exact expressions, thus coinciding with the recent result by Godrèche and Luck J. Stat. Phys. 104 489 (2001)]. Actually, non-Poisson statistics yields infinite memory at the probability level, thereby breaking any form of Markovian approximation, including the one adopted herein, to find an approximated analytical formula. For this reason, we check the accuracy of this approximated formula by comparing it with the numerical treatment of the second of the three exact expressions. We find that, although not exact, a simple analytical expression for the correlation function of arbitrary age is very accurate. We establish a connection between the correlation function and a generalized master equation of the same age. Thus this formalism, related to models used in glassy materials, allows us to illustrate an approach to the statistical treatment of blinking quantum dots, bypassing the limitations of the conventional Liouville treatment.
2005
Istituto per i Processi Chimico-Fisici - IPCF
Istituto dei Sistemi Complessi - ISC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/250397
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 46
social impact