We performed a benchmark study on a series of dihydrogen bond complexes and constructed a set of reference bond distances and interaction energies. The test set was employed to assess the performance of several wave function correlated and density functional theory methods. We found that second-order correlation methods describe relatively well the dihydrogen complexes. However, for high accuracy inclusion of triple contributions is important. On the other hand, none of the considered density functional methods can simultaneously yield accurate bond lengths and interaction energies. However, we found that improved results can be obtained by the inclusion of nonlocal exchange contributions.

Wave Function and Density Functional Theory Studies of Dihydrogen Complexes

E Fabiano;L A Constantin;F Della Sala
2014

Abstract

We performed a benchmark study on a series of dihydrogen bond complexes and constructed a set of reference bond distances and interaction energies. The test set was employed to assess the performance of several wave function correlated and density functional theory methods. We found that second-order correlation methods describe relatively well the dihydrogen complexes. However, for high accuracy inclusion of triple contributions is important. On the other hand, none of the considered density functional methods can simultaneously yield accurate bond lengths and interaction energies. However, we found that improved results can be obtained by the inclusion of nonlocal exchange contributions.
2014
Istituto Nanoscienze - NANO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/250587
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact