States of dilute Fe in SnO2 have been monitored using 57Fe emission Mössbauer spectroscopy following implantation of 57Mn (T 1/2 = 85.4 s) in the temperature range from 143 K to 711 K. A sharp annealing stage is observed at ~330 K where the Fe3 + /Fe2 + ratio shows a marked increase. It is suggested that this annealing stage is due to the dissociation of Mn-VO pairs during the lifetime of 57Mn; the activation energy for this dissociation is estimated to be 0.9(1) eV. Fe3 + is found in a paramagnetic state showing spin-lattice relaxation rates consistent with an expected T 2 dependence derived for a Raman process. In addition, a sharp lined doublet in the Mössbauer spectra is interpreted as due to recoil produced interstitial Fe.

Characterization of Fe states in dilute 57 Mn implanted SnO 2 film

R Mantovan;
2013

Abstract

States of dilute Fe in SnO2 have been monitored using 57Fe emission Mössbauer spectroscopy following implantation of 57Mn (T 1/2 = 85.4 s) in the temperature range from 143 K to 711 K. A sharp annealing stage is observed at ~330 K where the Fe3 + /Fe2 + ratio shows a marked increase. It is suggested that this annealing stage is due to the dissociation of Mn-VO pairs during the lifetime of 57Mn; the activation energy for this dissociation is estimated to be 0.9(1) eV. Fe3 + is found in a paramagnetic state showing spin-lattice relaxation rates consistent with an expected T 2 dependence derived for a Raman process. In addition, a sharp lined doublet in the Mössbauer spectra is interpreted as due to recoil produced interstitial Fe.
2013
Istituto per la Microelettronica e Microsistemi - IMM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/250711
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact