Negatively charged graphene layers from a graphite intercalation compound spontaneously dissolve in N-methylpyrrolidone, without the need for any sonication, yielding stable, air-sensitive, solutions of laterally extended atom-thick graphene sheets and ribbons with dimensions over tens of micrometers. These can be deposited on a variety of substrates. Height measurements showing single-atom thickness were performed by STM, AFM, multiple beam interferometry, and optical imaging on Sarfus wafers, demonstrating deposits of graphene flakes and ribbons. AFM height measurements on mica give the actual height of graphene (ca. 0.4 nm).

Solutions of Negatively Charged Graphene Sheets and Ribbons

Ortolani Luca;
2008

Abstract

Negatively charged graphene layers from a graphite intercalation compound spontaneously dissolve in N-methylpyrrolidone, without the need for any sonication, yielding stable, air-sensitive, solutions of laterally extended atom-thick graphene sheets and ribbons with dimensions over tens of micrometers. These can be deposited on a variety of substrates. Height measurements showing single-atom thickness were performed by STM, AFM, multiple beam interferometry, and optical imaging on Sarfus wafers, demonstrating deposits of graphene flakes and ribbons. AFM height measurements on mica give the actual height of graphene (ca. 0.4 nm).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/251094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 374
social impact