Magnetic domains at the surface of a ferroelectric monodomain BiFeO3 single crystal have been imaged by hard x-ray magnetic scattering. Magnetic domains up to several hundred microns in size have been observed, corresponding to cycloidal modulations of the magnetization along the wave vector k=(?,?,0) and symmetry equivalent directions. The rotation direction of the magnetization in all magnetic domains, determined by diffraction of circularly polarized light, was found to be unique and in agreement with predictions of a combined approach based on a spin-model complemented by relativistic density-functional simulations. Imaging of the surface shows that the largest adjacent domains display a 120° vortex structure.

X-Ray Imaging and Multiferroic Coupling of Cycloidal Magnetic Domains in Ferroelectric Monodomain BiFeO3 (vol 110, 217206, 2013)

P Barone;S Picozzi;
2013

Abstract

Magnetic domains at the surface of a ferroelectric monodomain BiFeO3 single crystal have been imaged by hard x-ray magnetic scattering. Magnetic domains up to several hundred microns in size have been observed, corresponding to cycloidal modulations of the magnetization along the wave vector k=(?,?,0) and symmetry equivalent directions. The rotation direction of the magnetization in all magnetic domains, determined by diffraction of circularly polarized light, was found to be unique and in agreement with predictions of a combined approach based on a spin-model complemented by relativistic density-functional simulations. Imaging of the surface shows that the largest adjacent domains display a 120° vortex structure.
2013
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/251136
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact