The experimental advances in cold atomic and molecular gases stimulate the investigation of lattice correlated systems beyond the conventional on-site Hubbard approximation, by possibly including multiparticle processes. We study fermionic extended Hubbard models in a one-dimensional lattice with different types of particle couplings, including also three- and four-body interactions up to nearest neighboring sites. By using the bosonization technique, we investigate the low-energy regime and determine the conditions for the appearance of ordered phases, for arbitrary particle filling. We find that three- and four-body couplings may significantly modify the phase diagram. In particular, diagonal three-body terms that directly couple the local particle densities have qualitatively different effects from off-diagonal three-body couplings originating from correlated hopping, and favor the appearance of a Luther-Emery phase even when two-body terms are repulsive. Furthermore, the four-body coupling gives rise to a rich phase diagram and may lead to the realization of the Haldane insulator phase at half-filling. © 2013 American Physical Society.

Quantum phases of one-dimensional Hubbard models with three- and four-body couplings

2013

Abstract

The experimental advances in cold atomic and molecular gases stimulate the investigation of lattice correlated systems beyond the conventional on-site Hubbard approximation, by possibly including multiparticle processes. We study fermionic extended Hubbard models in a one-dimensional lattice with different types of particle couplings, including also three- and four-body interactions up to nearest neighboring sites. By using the bosonization technique, we investigate the low-energy regime and determine the conditions for the appearance of ordered phases, for arbitrary particle filling. We find that three- and four-body couplings may significantly modify the phase diagram. In particular, diagonal three-body terms that directly couple the local particle densities have qualitatively different effects from off-diagonal three-body couplings originating from correlated hopping, and favor the appearance of a Luther-Emery phase even when two-body terms are repulsive. Furthermore, the four-body coupling gives rise to a rich phase diagram and may lead to the realization of the Haldane insulator phase at half-filling. © 2013 American Physical Society.
2013
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/251164
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact