microRNAs (miRNAs) are an important class of regulatory factors controlling gene expression at post-transcriptional level. Studies on interactions between different miRNAs and their target genes are of utmost importance to understand the role of miRNAs in the control of biological processes. This paper contributes to these studies by proposing a method for the extraction of co-clusters of miRNAs and messenger RNAs (mRNAs). Different from several already available co-clustering algorithms, our approach efficiently extracts a set of possibly overlapping, exhaustive and hierarchically organized co-clusters. The algorithm is well-suited for the task at hand since: i) mRNAs and miRNAs can be involved in different regulatory networks that may or may not be co-active under some conditions, ii) exhaustive co-clusters guarantee that possible co-regulations are not lost, iii) hierarchical browsing of co-clusters facilitates biologists in the interpretation of results. Results on synthetic and on real human miRNA:mRNA data show the effectiveness of the approach.

Hierarchical and Overlapping Co-Clustering of mRNA:miRNA Interactions.

Domenica D'Elia;
2012

Abstract

microRNAs (miRNAs) are an important class of regulatory factors controlling gene expression at post-transcriptional level. Studies on interactions between different miRNAs and their target genes are of utmost importance to understand the role of miRNAs in the control of biological processes. This paper contributes to these studies by proposing a method for the extraction of co-clusters of miRNAs and messenger RNAs (mRNAs). Different from several already available co-clustering algorithms, our approach efficiently extracts a set of possibly overlapping, exhaustive and hierarchically organized co-clusters. The algorithm is well-suited for the task at hand since: i) mRNAs and miRNAs can be involved in different regulatory networks that may or may not be co-active under some conditions, ii) exhaustive co-clusters guarantee that possible co-regulations are not lost, iii) hierarchical browsing of co-clusters facilitates biologists in the interpretation of results. Results on synthetic and on real human miRNA:mRNA data show the effectiveness of the approach.
2012
Istituto di Tecnologie Biomediche - ITB
978-1-61499-097-0
microRNAs
algorithm
co-clustering
hierarchical
bioinformatics
post-transcriptional regulation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/251453
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 12
social impact