Hyaluronic acid (HA) is an important component of extracellular matrix (ECM) in many tissues, providing a hemocompatible and supportive environment for cell growth. In this study, glycidyl methacrylate-hyaluronic acid (GMHA) was first synthesized and verified by proton nuclear magnetic resonance ((1)H NMR) spectroscopy. GMHA was then grafted to the surface of biomedical elastomer poly (styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) via an UV-initiated polymerization, monitored by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The further improvement of biocompatibility of the GMHA-modified SEBS films was assessed by platelet adhesion experiments and in vitro response of murine osteoblastic cell line MC-3T3-E1 with the virgin SEBS surface as the reference. It showed that the surface modification with HA strongly resisted platelet adhesion whereas improved cell-substrate interactions.

Improved biocompatibility of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer by a surface graft polymerization of hyaluronic acid

P Stagnaro
2013

Abstract

Hyaluronic acid (HA) is an important component of extracellular matrix (ECM) in many tissues, providing a hemocompatible and supportive environment for cell growth. In this study, glycidyl methacrylate-hyaluronic acid (GMHA) was first synthesized and verified by proton nuclear magnetic resonance ((1)H NMR) spectroscopy. GMHA was then grafted to the surface of biomedical elastomer poly (styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) via an UV-initiated polymerization, monitored by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The further improvement of biocompatibility of the GMHA-modified SEBS films was assessed by platelet adhesion experiments and in vitro response of murine osteoblastic cell line MC-3T3-E1 with the virgin SEBS surface as the reference. It showed that the surface modification with HA strongly resisted platelet adhesion whereas improved cell-substrate interactions.
2013
Istituto per lo Studio delle Macromolecole - ISMAC - Sede Milano
File in questo prodotto:
File Dimensione Formato  
prod_274263-doc_93939.pdf

solo utenti autorizzati

Descrizione: Improved biocompatibility of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer by a surface graft polymerization of hyaluronic acid
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/251479
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 35
social impact