Simulation is the tool of choice for the large-scale performance evaluation of upcoming telecommunication networking paradigms that involve users aboard vehicles, such as next-generation cellular networks for vehicular access, pure vehicular ad hoc networks, and opportunistic disruption-tolerant networks. The single most distinguishing feature of vehicular networks simulation lies in the mobility of users, which is the result of the interaction of complex macroscopic and microscopic dynamics. Notwithstanding the improvements that vehicular mobility modeling has undergone during the past few years, no car traffic trace is available today that captures both macroscopic and microscopic behaviors of drivers over a large urban region, and does so with the level of detail required for networking research. In this paper, we present a realistic synthetic dataset of the car traffic over a typical 24 hours in a 400-km2 region around the city of Köln, in Germany. We outline how our mobility description improves today's existing traces and show the potential impact that a comprehensive representation of vehicular mobility can have one the evaluation of networking technologies.

Large-scale Urban Vehicular Mobility for Networking Research

Fiore M
2011

Abstract

Simulation is the tool of choice for the large-scale performance evaluation of upcoming telecommunication networking paradigms that involve users aboard vehicles, such as next-generation cellular networks for vehicular access, pure vehicular ad hoc networks, and opportunistic disruption-tolerant networks. The single most distinguishing feature of vehicular networks simulation lies in the mobility of users, which is the result of the interaction of complex macroscopic and microscopic dynamics. Notwithstanding the improvements that vehicular mobility modeling has undergone during the past few years, no car traffic trace is available today that captures both macroscopic and microscopic behaviors of drivers over a large urban region, and does so with the level of detail required for networking research. In this paper, we present a realistic synthetic dataset of the car traffic over a typical 24 hours in a 400-km2 region around the city of Köln, in Germany. We outline how our mobility description improves today's existing traces and show the potential impact that a comprehensive representation of vehicular mobility can have one the evaluation of networking technologies.
2011
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
978-1-4673-0049-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/251532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact