We address cooperative caching in wireless networks, where the nodes may be mobile and exchange information in a peer-to-peer fashion. We consider both cases of nodes with large- and small-sized caches. For large-sized caches, we devise a strategy where nodes, independent of each other, decide whether to cache some content and for how long. In the case of small-sized caches, we aim to design a content replacement strategy that allows nodes to successfully store newly received information while maintaining the good performance of the content distribution system. Under both conditions, each node takes decisions according to its perception of what nearby users may store in their caches and with the aim of differentiating its own cache content from the other nodes'. The result is the creation of content diversity within the nodes neighborhood so that a requesting user likely finds the desired information nearby. We simulate our caching algorithms in different ad hoc network scenarios and compare them with other caching schemes, showing that our solution succeeds in creating the desired content diversity, thus leading to a resource-efficient information access.

Caching Strategies Based on Information Density Estimation in Wireless Ad Hoc Networks

Fiore M;
2011

Abstract

We address cooperative caching in wireless networks, where the nodes may be mobile and exchange information in a peer-to-peer fashion. We consider both cases of nodes with large- and small-sized caches. For large-sized caches, we devise a strategy where nodes, independent of each other, decide whether to cache some content and for how long. In the case of small-sized caches, we aim to design a content replacement strategy that allows nodes to successfully store newly received information while maintaining the good performance of the content distribution system. Under both conditions, each node takes decisions according to its perception of what nearby users may store in their caches and with the aim of differentiating its own cache content from the other nodes'. The result is the creation of content diversity within the nodes neighborhood so that a requesting user likely finds the desired information nearby. We simulate our caching algorithms in different ad hoc network scenarios and compare them with other caching schemes, showing that our solution succeeds in creating the desired content diversity, thus leading to a resource-efficient information access.
2011
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/251538
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact