The performance of implicit and explicit solvent models (polarizable continuum model (PCM) and microsolvation with positions of water molecules obtained either from molecular dynamics (MD) simulations or quantum mechanical geometry optimization) for calculations of electronic circular dichroism (CD) and optical rotation (OR) is examined for two polar and flexible molecules: lactamide and 2-aminopropanol. The vibrational structure of the CD spectrum is modeled for lactamide. The results are compared with the newly obtained experimental data. The signs of the bands are correctly reproduced using all three methods under investigation and the CAM-B3LYP functional for the CD spectrum of lactamide, but not for aminopropanol. The sign of the calculated optical rotation is correctly predicted by means of PCM, but its magnitude is somewhat underestimated in comparison with experiment for lactamide and overestimated for 2-aminopropanol. To some extent it is rectified by employing explicit hydration. Overall, microsolvation with geometry optimization seems more cost-effective than classical MD, but this is likely to be a consequence of inadequate classical potential and electronic structure model.

Circular Dichroism and Optical Rotation of Lactamide and 2-Aminopropanol in Aqueous Solution

Bloino Julien;
2013

Abstract

The performance of implicit and explicit solvent models (polarizable continuum model (PCM) and microsolvation with positions of water molecules obtained either from molecular dynamics (MD) simulations or quantum mechanical geometry optimization) for calculations of electronic circular dichroism (CD) and optical rotation (OR) is examined for two polar and flexible molecules: lactamide and 2-aminopropanol. The vibrational structure of the CD spectrum is modeled for lactamide. The results are compared with the newly obtained experimental data. The signs of the bands are correctly reproduced using all three methods under investigation and the CAM-B3LYP functional for the CD spectrum of lactamide, but not for aminopropanol. The sign of the calculated optical rotation is correctly predicted by means of PCM, but its magnitude is somewhat underestimated in comparison with experiment for lactamide and overestimated for 2-aminopropanol. To some extent it is rectified by employing explicit hydration. Overall, microsolvation with geometry optimization seems more cost-effective than classical MD, but this is likely to be a consequence of inadequate classical potential and electronic structure model.
2013
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/251683
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact