The conversion of hydroxybenzyl alcohols, nitro-benzyl alcohol and methoxybenzyl alcohols into the corresponding aldehydes is attempted in aqueous solution by Cu(II) (which reduces to Cu(0)), at room temperature, under acidic and deaerated conditions, using TiO2 solar simulated light photocatalysis. RESULTS: Under the experimental conditions adopted, the yields of the corresponding hydroxyaldehydes, when Cu(II) was completely reduced to Cu(0), were 21.6% for 4-hydroxybenzaldehyde, 11.5% for 3-hydroxybenzaldehyde and 20.2% for 2-hydroxybenzaldehyde. Higher conversions of 2-methoxybenzyl alcohol and 4-methoxybenzyl alcohol were recorded relative to unsubstituted benzyl alcohol. A selectivity of 5.2%, at 50% conversion of the substrate, was observed for the oxidation of 4-nitrobenzyl alcohol to 4-nitrobenzaldehyde. For high degrees of aromatic alcohols conversion, oxidation of the generated aldehydes to the corresponding benzoic acid derivatives is observed. CONCLUSION: The introduction of substituents into the aromatic alcohols structure changes the photocatalytic oxidation rate and product selectivities with respect to that previously observed for unsubstituted benzyl alcohol. In particular, the presence of both electron donating (hydroxy, methoxy groups) and electron withdrawing (nitrogroup) groups on the aromatic ring of the substrate causes a detrimental effect on the selectivity of the process with respect to the case of benzyl alcohol. © 2012 Society of Chemical Industry.

An evaluation of the application of a TiO2/ Cu(II)/solar simulated radiation system for selective oxidation of benzyl alcohol derivatives

Di Somma I;
2013

Abstract

The conversion of hydroxybenzyl alcohols, nitro-benzyl alcohol and methoxybenzyl alcohols into the corresponding aldehydes is attempted in aqueous solution by Cu(II) (which reduces to Cu(0)), at room temperature, under acidic and deaerated conditions, using TiO2 solar simulated light photocatalysis. RESULTS: Under the experimental conditions adopted, the yields of the corresponding hydroxyaldehydes, when Cu(II) was completely reduced to Cu(0), were 21.6% for 4-hydroxybenzaldehyde, 11.5% for 3-hydroxybenzaldehyde and 20.2% for 2-hydroxybenzaldehyde. Higher conversions of 2-methoxybenzyl alcohol and 4-methoxybenzyl alcohol were recorded relative to unsubstituted benzyl alcohol. A selectivity of 5.2%, at 50% conversion of the substrate, was observed for the oxidation of 4-nitrobenzyl alcohol to 4-nitrobenzaldehyde. For high degrees of aromatic alcohols conversion, oxidation of the generated aldehydes to the corresponding benzoic acid derivatives is observed. CONCLUSION: The introduction of substituents into the aromatic alcohols structure changes the photocatalytic oxidation rate and product selectivities with respect to that previously observed for unsubstituted benzyl alcohol. In particular, the presence of both electron donating (hydroxy, methoxy groups) and electron withdrawing (nitrogroup) groups on the aromatic ring of the substrate causes a detrimental effect on the selectivity of the process with respect to the case of benzyl alcohol. © 2012 Society of Chemical Industry.
2013
Istituto di Ricerche sulla Combustione - IRC - Sede Napoli
Aldehyde production; Benzyl alcohols derivatives; Cu reduction; Photocatalysis; Selective oxidation; Titanium dioxide
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/252127
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact