Lattice Boltzmann models (LBM) and phase field models (PFM) are two of the most widespread approaches for the numerical study of multicomponent fluid systems. Both methods have been successfully employed by several authors but, despite their popularity, still remains unclear how to properly compare them and how they perform on the same problem. Here we present a unified framework for the direct (one-to-one) comparison of the multicomponent LBM against the PFM. We provide analytical guidelines on how to compare the Shan-Chen (SC) lattice Boltzmann model for non-ideal multicomponent fluids with a corresponding free energy (FE) lattice Boltzmann model. Then, in order to properly compare the LBM vs. the PFM, we propose a new formulation for the free energy of the Cahn-Hilliard/Navier-Stokes equations. Finally, the LBM model is numerically compared with the corresponding phase field model solved by means of a pseudo-spectral algorithm. This work constitute a first attempt to set the basis for a quantitative comparison between different algorithms for multicomponent fluids. We limit our scope to the few of the most common variants of the two most widespread methodologies, namely the lattice Boltzmann model (SC and FE variants) and the phase field model. (C) 2012 Elsevier Inc. All rights reserved.

Unified framework for a side-by-side comparison of different multicomponent algorithms: Lattice Boltzmann vs. phase field model

Toschi;Federico
2013

Abstract

Lattice Boltzmann models (LBM) and phase field models (PFM) are two of the most widespread approaches for the numerical study of multicomponent fluid systems. Both methods have been successfully employed by several authors but, despite their popularity, still remains unclear how to properly compare them and how they perform on the same problem. Here we present a unified framework for the direct (one-to-one) comparison of the multicomponent LBM against the PFM. We provide analytical guidelines on how to compare the Shan-Chen (SC) lattice Boltzmann model for non-ideal multicomponent fluids with a corresponding free energy (FE) lattice Boltzmann model. Then, in order to properly compare the LBM vs. the PFM, we propose a new formulation for the free energy of the Cahn-Hilliard/Navier-Stokes equations. Finally, the LBM model is numerically compared with the corresponding phase field model solved by means of a pseudo-spectral algorithm. This work constitute a first attempt to set the basis for a quantitative comparison between different algorithms for multicomponent fluids. We limit our scope to the few of the most common variants of the two most widespread methodologies, namely the lattice Boltzmann model (SC and FE variants) and the phase field model. (C) 2012 Elsevier Inc. All rights reserved.
2013
Istituto Applicazioni del Calcolo ''Mauro Picone''
Phase field model
Lattice Boltzmann
Navier-Stokes
Cahn-Hilliard
Comparison
Drop
Leakage
Spurious currents
SPINODAL DECOMPOSITION
KINETIC-THEORY
GAS MIXTURES
NONUNIFORM SYSTEM
NONIDEAL FLUIDS
BINARY-MIXTURES
SURFACE-TENSION
EQUATION MODEL
FREE ENERGY
FLOWS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/252197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 45
social impact