Water oxidation is the crucial stage in the chemical and molecular sequence of photosynthesis, designed by Nature to convert solar light into chemical energy. The artificial "off-leaf" transposition is a major goal of energy research, aiming at the continuous production of hydrogen as a solar fuel, through the photo-catalytic splitting of water. Success in this task primarily depends on the interplay of light-activated multi-electron oxidation and reduction cycles and on the invention of stable and robust water oxidation catalysts, liberating oxygen with fast rates, high quantum yield, and long-term activity. A promising perspective is herein envisaged in the molecular design of functional metal-oxide cores and composite nano-materials.

Shaping the beating heart of artificial photosynthesis: oxygenic metal oxide nano-clusters

Bonchio Marcella
2012

Abstract

Water oxidation is the crucial stage in the chemical and molecular sequence of photosynthesis, designed by Nature to convert solar light into chemical energy. The artificial "off-leaf" transposition is a major goal of energy research, aiming at the continuous production of hydrogen as a solar fuel, through the photo-catalytic splitting of water. Success in this task primarily depends on the interplay of light-activated multi-electron oxidation and reduction cycles and on the invention of stable and robust water oxidation catalysts, liberating oxygen with fast rates, high quantum yield, and long-term activity. A promising perspective is herein envisaged in the molecular design of functional metal-oxide cores and composite nano-materials.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/252354
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 89
social impact