This paper addresses two-dimensional crystallization in the square lattice. A suitable configurational potential featuring both two- and three-body short-ranged particle interactions is considered. We prove that every ground state is a connected subset of the square lattice. Moreover, we discuss the global geometry of ground states and their optimality in terms of discrete isoperimetric inequalities on the square graph. Eventually, we study the aspect ratio of ground states and quantitatively prove the emergence of a square macroscopic Wulff shape as the number of particles grows. © 2014 IOP Publishing Ltd & London Mathematical Society.

Finite crystallization in the square lattice

P Piovano;U Stefanelli
2014

Abstract

This paper addresses two-dimensional crystallization in the square lattice. A suitable configurational potential featuring both two- and three-body short-ranged particle interactions is considered. We prove that every ground state is a connected subset of the square lattice. Moreover, we discuss the global geometry of ground states and their optimality in terms of discrete isoperimetric inequalities on the square graph. Eventually, we study the aspect ratio of ground states and quantitatively prove the emergence of a square macroscopic Wulff shape as the number of particles grows. © 2014 IOP Publishing Ltd & London Mathematical Society.
2014
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
atomic interaction potentials
boundary energy
crystallization
edge isoperimetric inequality
square lattice
File in questo prodotto:
File Dimensione Formato  
prod_280722-doc_83608.pdf

solo utenti autorizzati

Descrizione: Finite crystallization in the square lattice
Dimensione 411.78 kB
Formato Adobe PDF
411.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_280722-doc_83611.pdf

solo utenti autorizzati

Descrizione: Finite crystallization in the square lattice
Dimensione 723.76 kB
Formato Adobe PDF
723.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/252636
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 33
social impact