A systematic study on the use of Chlorophyll Fluorescence (CF) imaging in Pulsed Amplitude Modulated (PAM) for assessing viability changes of biodeteriogen on stone artifacts has been carried out. The experimentation has been performed on different phototrophic organisms of gravestone slabs from the monumental British Cemetery of Florence (Italy). Since the viability of these organisms and then their chlorophyll fluorescence emission is strongly dependent on the environmental conditions, a preliminary study on the effects of local patterns during the season was carried out. The trend of the fluorescence quantum yield (QYmax) at different dark adapted times in different periods of the year was determined. The results achieved in our work proves the effectiveness of the CF-PAM imaging for in situ lichen characterizations in conservation studies and defines an optimized application protocol.

Potential of Chlorophyll Fluorescence imaging for assessing bio-viability changes of biodeteriogen growths on stone monuments

Osticioli I;Mascalchi M;Siano S
2013

Abstract

A systematic study on the use of Chlorophyll Fluorescence (CF) imaging in Pulsed Amplitude Modulated (PAM) for assessing viability changes of biodeteriogen on stone artifacts has been carried out. The experimentation has been performed on different phototrophic organisms of gravestone slabs from the monumental British Cemetery of Florence (Italy). Since the viability of these organisms and then their chlorophyll fluorescence emission is strongly dependent on the environmental conditions, a preliminary study on the effects of local patterns during the season was carried out. The trend of the fluorescence quantum yield (QYmax) at different dark adapted times in different periods of the year was determined. The results achieved in our work proves the effectiveness of the CF-PAM imaging for in situ lichen characterizations in conservation studies and defines an optimized application protocol.
2013
Istituto di Fisica Applicata - IFAC
Biodegradation
Chlorophyll Fluorescence
Cultural Heritage
Imaging
In situ applications
Lichens
Photochemistry
Stone monuments
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/252907
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact