Impurity injection in the JET ELMy H-mode regime has produced high-confinement, quasi-steady-state plasmas with densities close to the Greenwald density. However, at large Ar densities, a sudden loss of confinement is observed. A possible correlation between loss of confinement and the observed MHD phenomena, both in the core and in the edge of the plasma, was considered. The degradation in confinement coincided with impurity profile peaking following the disappearance of sawtooth activity. In addition, impurity density profile analysis confirmed that central MHD modes prevented impurity peaking. Experiments were designed to understand the role of sawtooth crashes in redistributing impurities. Ion-cyclotron radio frequency heating was used to control the central q-profile and maintain sawtooth activity. This resulted in quasi-steady-state, high-performance plasmas with high Ar densities. At and high Ar injection rates, quasi-steady-states, which previously only lasted <1 E, were now maintained for the duration of the heating (t ~ 9 E). The increased central heating may have an additional beneficial effect in opposing impurity accumulation by changing the core power balance and modifying the impurity transport as predicted by neo-classical theory.

Role of sawtooth in avoiding impurity accumulation and maintaining good confinement in JET radiative mantle discharges

ME Puiatti;
2003

Abstract

Impurity injection in the JET ELMy H-mode regime has produced high-confinement, quasi-steady-state plasmas with densities close to the Greenwald density. However, at large Ar densities, a sudden loss of confinement is observed. A possible correlation between loss of confinement and the observed MHD phenomena, both in the core and in the edge of the plasma, was considered. The degradation in confinement coincided with impurity profile peaking following the disappearance of sawtooth activity. In addition, impurity density profile analysis confirmed that central MHD modes prevented impurity peaking. Experiments were designed to understand the role of sawtooth crashes in redistributing impurities. Ion-cyclotron radio frequency heating was used to control the central q-profile and maintain sawtooth activity. This resulted in quasi-steady-state, high-performance plasmas with high Ar densities. At and high Ar injection rates, quasi-steady-states, which previously only lasted <1 E, were now maintained for the duration of the heating (t ~ 9 E). The increased central heating may have an additional beneficial effect in opposing impurity accumulation by changing the core power balance and modifying the impurity transport as predicted by neo-classical theory.
2003
Istituto gas ionizzati - IGI - Sede Padova
-
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/25360
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact