A new class of glass-ceramic nanocomposite systems with a uniform distribution of SnO2 nanocrystals dispersed within an amorphous silica phase is fabricated in the form of thin films by using sol-gel processing. In this work, experiments with (100-x)SiO2-xSnO2 nanocomposite thin films with (x = 25 and 30 mol%) doped with Er3+ ions (concentrations of 0.5, 1 and 2 mol%) are presented. The focus has been both to determine the effect of rare-earth doping on the growth of SnO2 nanocrystals as well as the distribution of the Er3+ ions within the ceramic structure. Vibrational spectroscopic assessments have proven the glass-ceramic nature of the samples. EXAFS and photoluminescence spectra show that the rare-earth ions exist in both amorphous and crystalline phases. Moreover an energy transfer from SnO2 nanocrystals to erbium ions on excitation at 351 nm is demonstrated.

Erbium-Doped Tin-Silicate Sol-Gel-Derived Glass-Ceramic Thin Films: Effect of Environment Segregation on the Er3+ Emission

F d'Acapito;M Ferrari;
2015

Abstract

A new class of glass-ceramic nanocomposite systems with a uniform distribution of SnO2 nanocrystals dispersed within an amorphous silica phase is fabricated in the form of thin films by using sol-gel processing. In this work, experiments with (100-x)SiO2-xSnO2 nanocomposite thin films with (x = 25 and 30 mol%) doped with Er3+ ions (concentrations of 0.5, 1 and 2 mol%) are presented. The focus has been both to determine the effect of rare-earth doping on the growth of SnO2 nanocrystals as well as the distribution of the Er3+ ions within the ceramic structure. Vibrational spectroscopic assessments have proven the glass-ceramic nature of the samples. EXAFS and photoluminescence spectra show that the rare-earth ions exist in both amorphous and crystalline phases. Moreover an energy transfer from SnO2 nanocrystals to erbium ions on excitation at 351 nm is demonstrated.
2015
Istituto di fotonica e nanotecnologie - IFN
Istituto Officina dei Materiali - IOM -
SiO2-SnO2
Thin Films
EXAFS Measurement
Raman Spectroscopy
Er3+ Ions
Photoluminescence Spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/253641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact