The effect of steam on chemical structure and mechanical properties of renewable poly(ether-block-amide)s (PEBAs) is investigated by different characterization techniques, i.e. FT-IR, TGA, DSC, DMA, and BES. Steam sterilization is a mandatory process for materials used in medical applications. This process, employed during clinical practice and replicated in this study, affects polymer structure and morphology. Steam induces an increase of polyamide (PA) crystallinity in PEBAs with a majority of PA domains, due to the conformational transition from ?-helix to parallel and anti-parallel ?-sheet, with stronger hydrogen bonding. In PEBAs with longer polyether (PE) blocks, steam induces an increase of random PA domains and the formation of a more extended hydrogen bonding network between ether and amide moieties of the two segments. As a consequence of these microdomain conformational variations, relevant changes occur in molecular relaxations as demonstrated by DMA and BES results. © 2013 Wiley Periodicals, Inc.

Effect of steam on the structural and morphological stability of renewable poly(ether-block-amide)s

Pace G;
2014

Abstract

The effect of steam on chemical structure and mechanical properties of renewable poly(ether-block-amide)s (PEBAs) is investigated by different characterization techniques, i.e. FT-IR, TGA, DSC, DMA, and BES. Steam sterilization is a mandatory process for materials used in medical applications. This process, employed during clinical practice and replicated in this study, affects polymer structure and morphology. Steam induces an increase of polyamide (PA) crystallinity in PEBAs with a majority of PA domains, due to the conformational transition from ?-helix to parallel and anti-parallel ?-sheet, with stronger hydrogen bonding. In PEBAs with longer polyether (PE) blocks, steam induces an increase of random PA domains and the formation of a more extended hydrogen bonding network between ether and amide moieties of the two segments. As a consequence of these microdomain conformational variations, relevant changes occur in molecular relaxations as demonstrated by DMA and BES results. © 2013 Wiley Periodicals, Inc.
2014
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
biomedical application
block copolymers
crystal structures
renewable resources
steam sterilization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/253939
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact