Emission of carbon from ecosystems in the form of volatile organic compounds (VOC) represents a minor component flux in the global carbon cycle that has a large impact on ground-level ozone, particle and aerosol formation and thus on air chemistry and quality. This study reports exchanges of CO2 and VOC between a poplar-based short rotation coppice (SRC) plantation and the atmosphere, measured simul- taneously at two spatial scale, one at stand level and another at leaf level. The first technique combined Proton Transfer Reaction "Time-of-Flight" mass spectrometry (PTR-TOF-MS) with the eddy covariance method, to measure fluxes of a multitude of VOC. Abundant fluxes of isoprene, methanol and, to a lesser extent, fluxes of other oxygenated VOC such as formaldehyde, isoprene oxidation products (methyl vinyl ketone and methacrolein), methyl ethyl ketone, acetaldehyde, acetone and acetic acid, were measured. Under optimal environmental conditions, isoprene flux was mostly controlled by temperature and light. Differently, methanol flux underwent a combined enzymatic and stomatal control, together involving environmental drivers such as vapour pressure deficit (VPD), temperature and light intensity. Moreover fair weather condition favoured ozone deposition to the poplar plantation. The second technique involved trapping the VOCs emitted from leaves followed by gas chromatography-mass spectrometry (GC-MS) analysis. These leaf-level measurements showed that emission of isoprene in adult leaves and of monoterpenes in juvenile leaves are widespread across poplar genotypes. Detection of isoprene oxidation products (iox) emission with leaf-level measurements con- firmed that a fraction of isoprene may be already oxidized within leaves, possibly when isoprene copes with foliar reactive oxygen species (ROS) formed during warm and sunny days.

Simultaneous leaf- and ecosystem-level fluxes of volatile organic compounds from a poplar-based SRC plantation. Agricultural and Forest Meteorology

Brilli F;Pallozzi E;Calfapietra C;
2014

Abstract

Emission of carbon from ecosystems in the form of volatile organic compounds (VOC) represents a minor component flux in the global carbon cycle that has a large impact on ground-level ozone, particle and aerosol formation and thus on air chemistry and quality. This study reports exchanges of CO2 and VOC between a poplar-based short rotation coppice (SRC) plantation and the atmosphere, measured simul- taneously at two spatial scale, one at stand level and another at leaf level. The first technique combined Proton Transfer Reaction "Time-of-Flight" mass spectrometry (PTR-TOF-MS) with the eddy covariance method, to measure fluxes of a multitude of VOC. Abundant fluxes of isoprene, methanol and, to a lesser extent, fluxes of other oxygenated VOC such as formaldehyde, isoprene oxidation products (methyl vinyl ketone and methacrolein), methyl ethyl ketone, acetaldehyde, acetone and acetic acid, were measured. Under optimal environmental conditions, isoprene flux was mostly controlled by temperature and light. Differently, methanol flux underwent a combined enzymatic and stomatal control, together involving environmental drivers such as vapour pressure deficit (VPD), temperature and light intensity. Moreover fair weather condition favoured ozone deposition to the poplar plantation. The second technique involved trapping the VOCs emitted from leaves followed by gas chromatography-mass spectrometry (GC-MS) analysis. These leaf-level measurements showed that emission of isoprene in adult leaves and of monoterpenes in juvenile leaves are widespread across poplar genotypes. Detection of isoprene oxidation products (iox) emission with leaf-level measurements con- firmed that a fraction of isoprene may be already oxidized within leaves, possibly when isoprene copes with foliar reactive oxygen species (ROS) formed during warm and sunny days.
2014
Istituto di Biologia Agro-ambientale e Forestale - IBAF - Sede Porano
Fluxes
PTR-TOF-MS
Poplar
VOC
eddy covariance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/253975
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact