MB2 (M=Ti,Zr,Hf) Ultra High Temperature Ceramics (UHTCs) are characterised by melting temperatures in excess of 3000 °C and have structural, physical, transport, and thermodynamic properties suitable for use as thermal barriers in extreme environments. It is then necessary to investigate interactions of the diborides with the materials they are supposed to protect. To this end it has been developed a CALPHAD thermodynamic database for the calculation of phase equilibria and thermodynamic properties in the quinary system BNiTiZrHf. The database contains thermodynamic parameters for all the phases included in the 10 binary and 10 ternary sub-systems of BNiTiZrHf. A few binary systems (BHf, BTi, BZr, HfNi, NiZr) have been slightly modified with respect to the previous assessments and several ternary systems (BHfNi, BNiTi, BNiZr, BHfZr, BTiZr, HfNiTi, HfNiZr, HfTiZr, NiTiZr) have been completely assessed or re-assessed in this work with particular attention to the self-consistency of the models adopted.

Equilibrium between MB2 (M=Ti,Zr,Hf) UHTC and Ni: A thermodynamic database for the B-Hf-Ni-Ti-Zr system

Valenza F
2011

Abstract

MB2 (M=Ti,Zr,Hf) Ultra High Temperature Ceramics (UHTCs) are characterised by melting temperatures in excess of 3000 °C and have structural, physical, transport, and thermodynamic properties suitable for use as thermal barriers in extreme environments. It is then necessary to investigate interactions of the diborides with the materials they are supposed to protect. To this end it has been developed a CALPHAD thermodynamic database for the calculation of phase equilibria and thermodynamic properties in the quinary system BNiTiZrHf. The database contains thermodynamic parameters for all the phases included in the 10 binary and 10 ternary sub-systems of BNiTiZrHf. A few binary systems (BHf, BTi, BZr, HfNi, NiZr) have been slightly modified with respect to the previous assessments and several ternary systems (BHfNi, BNiTi, BNiZr, BHfZr, BTiZr, HfNiTi, HfNiZr, HfTiZr, NiTiZr) have been completely assessed or re-assessed in this work with particular attention to the self-consistency of the models adopted.
2011
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
CALPHAD
Metaldiboride joining
Thermodynamic database
Ultra High Temperature Ceramics
File in questo prodotto:
File Dimensione Formato  
prod_312624-doc_100969.pdf

solo utenti autorizzati

Descrizione: Equilibrium between MB2 (M=Ti,Zr,Hf) UHTC and Ni: A thermodynamic database for the B-Hf-Ni-Ti-Zr system
Dimensione 4.04 MB
Formato Adobe PDF
4.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/254340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? ND
social impact