The ongoing design of the ITER Ion Cyclotron Heating and Current Drive system (20 MW, 40-55 MHz) is rendered challenging by the wide spectrum of requirements and interface constraints to which it is subject, several of which are conflicting and/or still in a high state of flux. These requirements include operation over a broad range of plasma scenarios and magnetic fields (which prompts usage of wide-band phased antenna arrays), high radio-frequency (RF) power density at the first wall (and associated operation close to voltage and current limits), resilience to ELM-induced load variations, intense thermal and mechanical loads, long pulse operation, high system availability, efficient nuclear shielding, high density of antenna services, remote-handling ability, tight installation tolerances, and nuclear safety function as tritium confinement barrier. R&D activities are ongoing or in preparation to validate critical antenna components (plasma-facing Faraday screen, RF sliding contacts, RF vacuum windows), as well as to qualify the RF power sources and the transmission and matching components. Intensive numerical modeling and experimental studies on antenna mock-ups have been conducted to validate and optimize the RF design. The paper highlights progress and outstanding issues for the various system components. (C) 2013 ITER Organization. Published by Elsevier B.V. All rights reserved.

Status of the ITER Ion Cyclotron H&CD system

A Simonetto;
2013

Abstract

The ongoing design of the ITER Ion Cyclotron Heating and Current Drive system (20 MW, 40-55 MHz) is rendered challenging by the wide spectrum of requirements and interface constraints to which it is subject, several of which are conflicting and/or still in a high state of flux. These requirements include operation over a broad range of plasma scenarios and magnetic fields (which prompts usage of wide-band phased antenna arrays), high radio-frequency (RF) power density at the first wall (and associated operation close to voltage and current limits), resilience to ELM-induced load variations, intense thermal and mechanical loads, long pulse operation, high system availability, efficient nuclear shielding, high density of antenna services, remote-handling ability, tight installation tolerances, and nuclear safety function as tritium confinement barrier. R&D activities are ongoing or in preparation to validate critical antenna components (plasma-facing Faraday screen, RF sliding contacts, RF vacuum windows), as well as to qualify the RF power sources and the transmission and matching components. Intensive numerical modeling and experimental studies on antenna mock-ups have been conducted to validate and optimize the RF design. The paper highlights progress and outstanding issues for the various system components. (C) 2013 ITER Organization. Published by Elsevier B.V. All rights reserved.
2013
Istituto di fisica del plasma - IFP - Sede Milano
ITER
Plasma heating
Ion cyclotron
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/254422
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? ND
social impact