Processing tomato is a high water demanding crop, thus requiring irrigation throughout growing season in arid and semiarid areas. The application of deficit irrigation (DI) strategies to this crop may greatly contribute to save irrigation water. A two-year study was carried out in order to assess the effects of DI upon water productivity, final biomass, fruit yield and some quality traits of open-field processing tomato cv. Brigade in a typical semi-arid Mediterranean environment of South Italy. Four irrigation treatments were studied: no irrigation following plant establishment (V0); 100% (V100) or 50% (V50) evapotranspiration (ETc) restoration up to fruit maturity, 100% ETc restoration up to flowering, then 50% ETc restoration (V100-50). Total dry biomass accumulation was significantly depressed by early soil water deficit in V0; irrigation at a reduced rate (50% ETc) from initial stages (V50) or from flowering onwards (V100-50) did not induce any losses in final dry biomass. The marketable yield did not significantly differ among plots irrigated, but an averaged irrigation water saving of 30.4% in V100-50 and 46.2% in V50 was allowed as compared to V100. Marketable yield was negatively affected by the early water shortage in V0, due to the high fruit losses (>44%). The effects of DI on fruit quality were generally the converse of those on fruit yield. DI improved total soluble solids content, titratable acidity and vitamin C content. Water use efficiency was positively affected by DI, suggesting that the crop does not benefits from the water when this last is supplied to fulfil total crop requirements for the whole season. Yield response factor, which indicates the level of tolerance of a crop to water stress, was 0.49 for total dry biomass (Kss) and 0.76 for marketable yield (Ky), indicating that in both cases the reduction in crop productivity is proportionally less than the relative ET deficit. In conclusion, the adoption of DI strategies where a 50% reduction of ETc restored is applied for the whole growing season or part of it could be suggested in processing tomato, to save water improving its use efficiency, minimizing fruit losses and maintaining high fruit quality levels. This aspect is quite important in semi-arid environments, where water scarcity is an increasing concern and water costs are continuously rising.

Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions

Cristina Patanè;
2011

Abstract

Processing tomato is a high water demanding crop, thus requiring irrigation throughout growing season in arid and semiarid areas. The application of deficit irrigation (DI) strategies to this crop may greatly contribute to save irrigation water. A two-year study was carried out in order to assess the effects of DI upon water productivity, final biomass, fruit yield and some quality traits of open-field processing tomato cv. Brigade in a typical semi-arid Mediterranean environment of South Italy. Four irrigation treatments were studied: no irrigation following plant establishment (V0); 100% (V100) or 50% (V50) evapotranspiration (ETc) restoration up to fruit maturity, 100% ETc restoration up to flowering, then 50% ETc restoration (V100-50). Total dry biomass accumulation was significantly depressed by early soil water deficit in V0; irrigation at a reduced rate (50% ETc) from initial stages (V50) or from flowering onwards (V100-50) did not induce any losses in final dry biomass. The marketable yield did not significantly differ among plots irrigated, but an averaged irrigation water saving of 30.4% in V100-50 and 46.2% in V50 was allowed as compared to V100. Marketable yield was negatively affected by the early water shortage in V0, due to the high fruit losses (>44%). The effects of DI on fruit quality were generally the converse of those on fruit yield. DI improved total soluble solids content, titratable acidity and vitamin C content. Water use efficiency was positively affected by DI, suggesting that the crop does not benefits from the water when this last is supplied to fulfil total crop requirements for the whole season. Yield response factor, which indicates the level of tolerance of a crop to water stress, was 0.49 for total dry biomass (Kss) and 0.76 for marketable yield (Ky), indicating that in both cases the reduction in crop productivity is proportionally less than the relative ET deficit. In conclusion, the adoption of DI strategies where a 50% reduction of ETc restored is applied for the whole growing season or part of it could be suggested in processing tomato, to save water improving its use efficiency, minimizing fruit losses and maintaining high fruit quality levels. This aspect is quite important in semi-arid environments, where water scarcity is an increasing concern and water costs are continuously rising.
2011
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo - ISAFOM
Deficit irrigation
Processing tomato
Total soluble solids
Yield response factor
Water use efficiency
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/25468
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 346
  • ???jsp.display-item.citation.isi??? 277
social impact