We present a straightforward, noniterative projection scheme that can represent the electronic ground state of a periodic system on a finite atomic-orbital-like basis, up to a predictable number of electronic states and with controllable accuracy. By cofiltering the projections of plane-wave Bloch states with high-kinetic-energy components, the richness of the finite space and thus the number of exactly-reproduced bands can be selectively increased at a negligible computational cost, an essential requirement for the design of efficient algorithms for electronic structure simulations of realistic material systems and massive high-throughput investigations. © 2013 American Physical Society.
Effective and accurate representation of extended Bloch states on finite Hilbert spaces
Ferretti A;Calzolari A;
2013
Abstract
We present a straightforward, noniterative projection scheme that can represent the electronic ground state of a periodic system on a finite atomic-orbital-like basis, up to a predictable number of electronic states and with controllable accuracy. By cofiltering the projections of plane-wave Bloch states with high-kinetic-energy components, the richness of the finite space and thus the number of exactly-reproduced bands can be selectively increased at a negligible computational cost, an essential requirement for the design of efficient algorithms for electronic structure simulations of realistic material systems and massive high-throughput investigations. © 2013 American Physical Society.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


