A statistical characterization for two-point temperature fluctuations in the planetary boundary layer (PBL) is analyzed and its implications on the long-standing closure problem discussed. Despite the non-triviality of the dynamics of temperature fluctuations, our analysis supports the idea that the most relevant statistical properties can be captured solely in terms of two scaling exponents. They turned out to be weakly dependent on the stability properties of the PBL. Its statistics have been investigated by collecting data from a field experiment carried out in the urban area of Turin (Italy) from January 2007 to March 2008. Our results confirm those from a large-eddy simulation (LES) analysis carried out for the convective PBL with different level of convection. We extend the scenario to the stable PBL, a regime much more difficult to simulate when exploiting LES.
An Experimental Study of the Statistics of Temperature Fluctuations in the Atmospheric Boundary Layer
Mortarini;Luca;Ferrero;Enrico
2014
Abstract
A statistical characterization for two-point temperature fluctuations in the planetary boundary layer (PBL) is analyzed and its implications on the long-standing closure problem discussed. Despite the non-triviality of the dynamics of temperature fluctuations, our analysis supports the idea that the most relevant statistical properties can be captured solely in terms of two scaling exponents. They turned out to be weakly dependent on the stability properties of the PBL. Its statistics have been investigated by collecting data from a field experiment carried out in the urban area of Turin (Italy) from January 2007 to March 2008. Our results confirm those from a large-eddy simulation (LES) analysis carried out for the convective PBL with different level of convection. We extend the scenario to the stable PBL, a regime much more difficult to simulate when exploiting LES.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.