Electrophoretical analyses of the gliadin fraction extracted from seeds of the intervarietal substitution lines of T. aestivum ssp. spelta in the T. aestivum ssp. vulgare cv 'Chinese Spring' for the homoeologous groups 1 and 6 and substitution lines of 6D chromosome of 'Chinese Spring' in the durum wheat cv 'Langdon' allowed the identification of seeds without gliadin proteins controlled by genes on chromosome 6A and 6B. A gliadin component of 'Chinese Spring', not previously assigned to any specific chromosome, is controlled by chromosome 6D in the 6D (6A) and 6D (6B) disomic substitution lines of 'Langdon'. Additional genes controlling the synthesis of this component may be present on other chromosomes, very likely 6A and 6B, since the analysis of the 'Chinese Spring' compensating nullisomic-tetrasomics involving the 6D chromosome does not show the loss of this component or any apparent change in staining intensity. Chromosomal location data and two-dimensional gliadin maps reveal close homologies between the two hexaploid wheats, 'Chinese Spring' (T. aestivum ssp. vulgare) and T. aestivum ssp. spelta, belonging to different subspecies in the hexaploid group of genomic formula AABBDD. The comparison of gliadin electrophoretic patterns aiding in the identification of evolutionary pathways in wheat is stressed.

Chromosomal location of gliadin coding genes in T. aestivum ssp. spelta and evidence on the lack of components controlled by Gli-2 loci in wheat aneuploids

Margiotta B;
1989-01-01

Abstract

Electrophoretical analyses of the gliadin fraction extracted from seeds of the intervarietal substitution lines of T. aestivum ssp. spelta in the T. aestivum ssp. vulgare cv 'Chinese Spring' for the homoeologous groups 1 and 6 and substitution lines of 6D chromosome of 'Chinese Spring' in the durum wheat cv 'Langdon' allowed the identification of seeds without gliadin proteins controlled by genes on chromosome 6A and 6B. A gliadin component of 'Chinese Spring', not previously assigned to any specific chromosome, is controlled by chromosome 6D in the 6D (6A) and 6D (6B) disomic substitution lines of 'Langdon'. Additional genes controlling the synthesis of this component may be present on other chromosomes, very likely 6A and 6B, since the analysis of the 'Chinese Spring' compensating nullisomic-tetrasomics involving the 6D chromosome does not show the loss of this component or any apparent change in staining intensity. Chromosomal location data and two-dimensional gliadin maps reveal close homologies between the two hexaploid wheats, 'Chinese Spring' (T. aestivum ssp. vulgare) and T. aestivum ssp. spelta, belonging to different subspecies in the hexaploid group of genomic formula AABBDD. The comparison of gliadin electrophoretic patterns aiding in the identification of evolutionary pathways in wheat is stressed.
1989
Istituto di Bioscienze e Biorisorse
Wheat aneuploids
Null forms
Storage proteins
Gliadins
Evolution
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/255177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact