Reaction-diffusion processes in two-dimensional percolating structures are investigated. Two different problems are addressed: reaction spreading on a percolating cluster and front propagation through a percolating channel. For reaction spreading, numerical data and analytical estimates show a power-law behavior of the reaction product as M(t)~tdl, where dl is the connectivity dimension. In a percolating channel, a statistically stationary traveling wave develops. The speed and the width of the traveling wave are numerically computed. While the front speed is a low-fluctuating quantity and its behavior can be understood using a simple theoretical argument, the front width is a high-fluctuating quantity showing a power-law behavior as a function of the size of the channel.
Reaction spreading on percolating clusters
Davide Vergni;
2013
Abstract
Reaction-diffusion processes in two-dimensional percolating structures are investigated. Two different problems are addressed: reaction spreading on a percolating cluster and front propagation through a percolating channel. For reaction spreading, numerical data and analytical estimates show a power-law behavior of the reaction product as M(t)~tdl, where dl is the connectivity dimension. In a percolating channel, a statistically stationary traveling wave develops. The speed and the width of the traveling wave are numerically computed. While the front speed is a low-fluctuating quantity and its behavior can be understood using a simple theoretical argument, the front width is a high-fluctuating quantity showing a power-law behavior as a function of the size of the channel.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


