This work investigates the capability of supervised classification methods in detecting both major tissues and subcortical structures using multispectral brain magnetic resonance images. First, by means of a realistic digital brain phantom, we investigated the classification performance of various Discriminant Analysis methods, K-Nearest Neighbor and Support Vector Machine. Then, using phantom and real data, we quantitatively assessed the benefits of integrating anatomical information in the classification, in the form of voxels coordinates as additional features to the intensities or tissue probabilistic atlases as priors. In addition we tested the effect of spatial correlations between neighbouring voxels and image denoising. For each brain tissue we measured the classification performance in terms of global agreement percentage, false positive and false negative rates and kappa coefficient. The effectiveness of integrating spatial information or a tissue probabilistic atlas has been demonstrated for the aim of accurately classifying brain magnetic resonance images.

Evaluation of supervised methods for the classification of major tissues and subcortical structures in multispectral brain magnetic resonance images

Loredana Murino;Donatella Granata;Maria Francesca Carfora;Bruno Alfano;Umberto Amato;Michele Larobina
2014

Abstract

This work investigates the capability of supervised classification methods in detecting both major tissues and subcortical structures using multispectral brain magnetic resonance images. First, by means of a realistic digital brain phantom, we investigated the classification performance of various Discriminant Analysis methods, K-Nearest Neighbor and Support Vector Machine. Then, using phantom and real data, we quantitatively assessed the benefits of integrating anatomical information in the classification, in the form of voxels coordinates as additional features to the intensities or tissue probabilistic atlases as priors. In addition we tested the effect of spatial correlations between neighbouring voxels and image denoising. For each brain tissue we measured the classification performance in terms of global agreement percentage, false positive and false negative rates and kappa coefficient. The effectiveness of integrating spatial information or a tissue probabilistic atlas has been demonstrated for the aim of accurately classifying brain magnetic resonance images.
2014
Istituto Applicazioni del Calcolo ''Mauro Picone''
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
Brain
Denoising
Discriminant Analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/255420
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact