In this paper we describe our approach to EVALITA 2014 SENTIment POLarity Classification (SENTIPOLC) task. We participated only in the Polarity Classification sub-task. By resorting to a wide set of general-purpose features qualifying the lexical and grammatical structure of a text, automatically created ad-hoc lexicons and existing free available resources, we achieved the second best accuracy.

Linguistically-motivated and Lexicon Features for Sentiment Analysis of Italian Tweets

Stefano Cresci;Felice Dell'Orletta;Maurizio Tesconi
2014

Abstract

In this paper we describe our approach to EVALITA 2014 SENTIment POLarity Classification (SENTIPOLC) task. We participated only in the Polarity Classification sub-task. By resorting to a wide set of general-purpose features qualifying the lexical and grammatical structure of a text, automatically created ad-hoc lexicons and existing free available resources, we achieved the second best accuracy.
2014
Istituto di informatica e telematica - IIT
Istituto di linguistica computazionale "Antonio Zampolli" - ILC
Lexicons resources
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/255596
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact