This chapter looks into the spatiotemporal dimension of both animal tracking data sets and the dynamic environmental data that can be associated with them. Typically, these geographic layers derive from remote sensing measurements, commonly those collected by sensors deployed on earth-orbiting satellites, which can be updated on a monthly, weekly or even daily basis. The modelling potential for integrating these two levels of ecological complexity (animal movement and environmental variability) is huge and comes from the possibility to investigate processes as they build up, i.e. in a full dynamic framework. This chapter's exercise will describe how to integrate dynamic environmental data in the spatial database and join to animal locations one of the most used indices for ecological productivity and phenology, the normalised difference vegetation index (NDVI) derived from MODIS. The exercise is based on the database built so far in Chaps. 2, 3, 4, 5 and 6.

Tracking Animals in a Dynamic Environment: Remote Sensing Image Time Series

Capecchi;Valerio;
2014

Abstract

This chapter looks into the spatiotemporal dimension of both animal tracking data sets and the dynamic environmental data that can be associated with them. Typically, these geographic layers derive from remote sensing measurements, commonly those collected by sensors deployed on earth-orbiting satellites, which can be updated on a monthly, weekly or even daily basis. The modelling potential for integrating these two levels of ecological complexity (animal movement and environmental variability) is huge and comes from the possibility to investigate processes as they build up, i.e. in a full dynamic framework. This chapter's exercise will describe how to integrate dynamic environmental data in the spatial database and join to animal locations one of the most used indices for ecological productivity and phenology, the normalised difference vegetation index (NDVI) derived from MODIS. The exercise is based on the database built so far in Chaps. 2, 3, 4, 5 and 6.
2014
Istituto di Biometeorologia - IBIMET - Sede Firenze
978-3-319-03742-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/255689
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact