We investigate the behaviour of a two-component Fermi superfluid in a double-well potential. We numerically solve the time dependent Bogoliubov-de Gennes equations and characterize the regimes of Josephson oscillations and self-trapping for different potential barriers and initial conditions. In the weak link limit the results agree with a two-mode model where the relative population and the phase difference between the two wells obey coupled nonlinear Josephson equations. A more complex dynamics is predicted for large amplitude oscillations and large tunneling.

Josephson Oscillations and Self-Trapping of Superfluid Fermions in a Double-Well Potential

Dalfovo Franco
2014

Abstract

We investigate the behaviour of a two-component Fermi superfluid in a double-well potential. We numerically solve the time dependent Bogoliubov-de Gennes equations and characterize the regimes of Josephson oscillations and self-trapping for different potential barriers and initial conditions. In the weak link limit the results agree with a two-mode model where the relative population and the phase difference between the two wells obey coupled nonlinear Josephson equations. A more complex dynamics is predicted for large amplitude oscillations and large tunneling.
2014
Istituto Nazionale di Ottica - INO
Josephson oscillation
Self-trapping
Fermi superfluids
Time-dependent BdG
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/255885
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact