The Golgi complex of mammalian cells is composed of interconnected stacks of flattened cisternae that form a continuous membrane system in the pericentriolar region of the cell. At the onset of mitosis, this so-called Golgi ribbon is converted into small tubular-vesicular clusters in a tightly regulated fragmentation process, which leads to a temporary loss of the physical Golgi-centrosome proximity. Mitotic Golgi breakdown is required for Golgi partitioning into the two daughter cells, cell cycle progression and may contribute to the dispersal of Golgi-associated signaling molecules. Here, we review our current understanding of the mechanisms that control mitotic Golgi reorganization, its biological significance, and assays that are used to study this process. © 2013 Elsevier Inc.

Signaling at the golgi during mitosis

Colanzi A;
2013

Abstract

The Golgi complex of mammalian cells is composed of interconnected stacks of flattened cisternae that form a continuous membrane system in the pericentriolar region of the cell. At the onset of mitosis, this so-called Golgi ribbon is converted into small tubular-vesicular clusters in a tightly regulated fragmentation process, which leads to a temporary loss of the physical Golgi-centrosome proximity. Mitotic Golgi breakdown is required for Golgi partitioning into the two daughter cells, cell cycle progression and may contribute to the dispersal of Golgi-associated signaling molecules. Here, we review our current understanding of the mechanisms that control mitotic Golgi reorganization, its biological significance, and assays that are used to study this process. © 2013 Elsevier Inc.
2013
Istituto di Biochimica delle Proteine - IBP - Sede Napoli
Cell cycle progression
Fragmentation
Kinases
Mitotic entry
Reorganization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/256122
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact