In recent years it has been pointed out that, in a number of applications involving classification, the final goal is not determining which class (or classes) individual unlabelled data items belong to, but determining the prevalence (or "relative frequency") of each class in the unlabelled data. The latter task has come to be known as quantification [1, 3, 5-10, 15, 18, 19].

Text quantification

Sebastiani F
2014

Abstract

In recent years it has been pointed out that, in a number of applications involving classification, the final goal is not determining which class (or classes) individual unlabelled data items belong to, but determining the prevalence (or "relative frequency") of each class in the unlabelled data. The latter task has come to be known as quantification [1, 3, 5-10, 15, 18, 19].
2014
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-3-319-06027-9
Quantification
Prevalence estimation
Supervised learning
File in questo prodotto:
File Dimensione Formato  
prod_280587-doc_79650.pdf

solo utenti autorizzati

Descrizione: Text quantification
Tipologia: Versione Editoriale (PDF)
Dimensione 100.28 kB
Formato Adobe PDF
100.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/256136
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact