Cardiolipin is a unique phospholipid which is almost exclusively located in the inner mitochondrial membrane where it is biosynthesized. Considerable progress has recently been made in understanding the role of cardiolipin in mitochondrial function and bioenergetics. This phospholipid is associated with membranes designed to generate an electrochemical gradient that is used to produce ATP, such as bacterial plasma membranes and inner mitochondrial membrane. This ubiquitous and intimate association between cardiolipin and energy transducing membranes indicates an important role for cardiolipin in mitochondrial bioenergetic processes. Cardiolipin has been shown to interact with a number of proteins, including the respiratory chain complexes and substrate carrier proteins. Over the past decade, the significance of cardiolipin in the organization of components of the electron transport chain into higher order assemblies, termed respiratory supercomplexes, has been established. Moreover, cardiolipin is involved in different stages of the mitochondrial apoptotic process, as well as in mitochondrial membrane stability and dynamics. This review discusses the current understanding of the functional role that cardiolipin plays in several reactions and processes involved in mitochondrial bioenergetics. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components. © 2013 Elsevier B.V.
Functional role of cardiolipin in mitochondrial bioenergetics
Petrosillo G
2014
Abstract
Cardiolipin is a unique phospholipid which is almost exclusively located in the inner mitochondrial membrane where it is biosynthesized. Considerable progress has recently been made in understanding the role of cardiolipin in mitochondrial function and bioenergetics. This phospholipid is associated with membranes designed to generate an electrochemical gradient that is used to produce ATP, such as bacterial plasma membranes and inner mitochondrial membrane. This ubiquitous and intimate association between cardiolipin and energy transducing membranes indicates an important role for cardiolipin in mitochondrial bioenergetic processes. Cardiolipin has been shown to interact with a number of proteins, including the respiratory chain complexes and substrate carrier proteins. Over the past decade, the significance of cardiolipin in the organization of components of the electron transport chain into higher order assemblies, termed respiratory supercomplexes, has been established. Moreover, cardiolipin is involved in different stages of the mitochondrial apoptotic process, as well as in mitochondrial membrane stability and dynamics. This review discusses the current understanding of the functional role that cardiolipin plays in several reactions and processes involved in mitochondrial bioenergetics. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components. © 2013 Elsevier B.V.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.