Novel Au@Ag core-shell nanocubes (NCs) were successfully prepared by the controlled epitaxial growth of Ag shells onto Au nanoellipsoids (NEs) in the presence of surfactants. The growth mechanism of the Au@Ag core-shell NCs was systematically investigated by analyzing their morphology, optical properties, and crystallography. The localized surface plasmon resonance (LSPR) characteristics and the electric field distribution of the Au@Ag core-shell NCs were studied using the finite element method (FEM) based on the plasmon hybridization theory. Compared with pure Ag NCs, the absorption spectrum of the Au@Ag core-shell NCs exhibits a red shift and a weak shoulder near 550 nm, and the notable enhancement of electric field occurs around the corners along the long-axis of Au ellipsoidal core because of plasmonic resonant coupling. Surface-enhanced Raman scattering (SERS) of the Au@Ag core-shell NCs labeled with 4-mercaptobenzoic acid molecules reveals that the bimetallic core-shell NCs possess efficient SERS activity with an enhancement factor EF = 2.27×106, thus confirming the possibility of using the Au@Ag core-shell NCs as stable probe for SERS-based biosensing applications.
Au@Ag Core-Shell Nanocubes: Epitaxial Growth Synthesis and Surface-Enhanced Raman Scattering Performance
Lucia Petti;Pasquale Mormile
2015
Abstract
Novel Au@Ag core-shell nanocubes (NCs) were successfully prepared by the controlled epitaxial growth of Ag shells onto Au nanoellipsoids (NEs) in the presence of surfactants. The growth mechanism of the Au@Ag core-shell NCs was systematically investigated by analyzing their morphology, optical properties, and crystallography. The localized surface plasmon resonance (LSPR) characteristics and the electric field distribution of the Au@Ag core-shell NCs were studied using the finite element method (FEM) based on the plasmon hybridization theory. Compared with pure Ag NCs, the absorption spectrum of the Au@Ag core-shell NCs exhibits a red shift and a weak shoulder near 550 nm, and the notable enhancement of electric field occurs around the corners along the long-axis of Au ellipsoidal core because of plasmonic resonant coupling. Surface-enhanced Raman scattering (SERS) of the Au@Ag core-shell NCs labeled with 4-mercaptobenzoic acid molecules reveals that the bimetallic core-shell NCs possess efficient SERS activity with an enhancement factor EF = 2.27×106, thus confirming the possibility of using the Au@Ag core-shell NCs as stable probe for SERS-based biosensing applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.