We present an indirect imaging method that measures both amplitude and phase information from a transmissive target. Our method is based on an optical eigenmode decomposition of the light intensity and the first-order cross correlation between a target field and these eigenmodes. We demonstrate that such optical eigenmode imaging does not need any a priori knowledge of the imaging system and corresponds to a compressive full-field sampling, leading to high image extraction efficiencies. Finally, we discuss the implications with respect to second-order correlation imaging. © 2011 American Physical Society.
Optical eigenmode imaging
De Luca AC;
2011
Abstract
We present an indirect imaging method that measures both amplitude and phase information from a transmissive target. Our method is based on an optical eigenmode decomposition of the light intensity and the first-order cross correlation between a target field and these eigenmodes. We demonstrate that such optical eigenmode imaging does not need any a priori knowledge of the imaging system and corresponds to a compressive full-field sampling, leading to high image extraction efficiencies. Finally, we discuss the implications with respect to second-order correlation imaging. © 2011 American Physical Society.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


