The cytoskeleton provides the backbone structure for the cellular organization, determining, in particular, the cellular mechanical properties. These are important factors in many biological processes, as, for instance, the metastatic process of malignant cells. In this paper, we demonstrate the possibility of monitoring the cytoskeleton structural transformations in optically trapped yeast cells (Saccharomyces cerevisiae) by tracking the forward scattered light via a quadrant photodiode. We distinguished normal cells from cells treated with latrunculin A, a drug which is known to induce the actin-cytoskeleton depolymerization. Since the proposed technique relies only on the inherent properties of the optical trap, without requiring external markers or biochemical sensitive spectroscopic techniques, it can be readily combined with existing optical tweezers setups. © 2007 Optical Society of America.
Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers
De Luca AC;
2007
Abstract
The cytoskeleton provides the backbone structure for the cellular organization, determining, in particular, the cellular mechanical properties. These are important factors in many biological processes, as, for instance, the metastatic process of malignant cells. In this paper, we demonstrate the possibility of monitoring the cytoskeleton structural transformations in optically trapped yeast cells (Saccharomyces cerevisiae) by tracking the forward scattered light via a quadrant photodiode. We distinguished normal cells from cells treated with latrunculin A, a drug which is known to induce the actin-cytoskeleton depolymerization. Since the proposed technique relies only on the inherent properties of the optical trap, without requiring external markers or biochemical sensitive spectroscopic techniques, it can be readily combined with existing optical tweezers setups. © 2007 Optical Society of America.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.