A synthetic procedure has been developed to conjugate ferulic acid (FA) to an important natural polysaccharide derivative such as hyaluronic acid (HA). The activation of FA with 1,1'-carbonyldiimidazole (CDI) has been investigated. Two reactive intermediates, namely monoimidazolide 2[i.e. (E)-3-(4-hydroxy3-methoxyphenyl)-1-(1H-imidazol-1-yl)prop-2-en-1-one] and bisimidazolide 3[i.e. (E)-4-(3-(1H-imidazol-1-yl)-3-oxoprop-1-enyl)-2-methoxyphenyl 1H-imidazole-1-carboxylate] were characterized from the point of view of their structure and reactivity. The ready isolation of bisimidazolide 3 and its reactivity support its potential usefulness in the feruloylation of molecular or macromolecular materials bearing hydroxyl moieties. Bisimidazolide derivative 3 has been found to be an effective reagent in the feruloylation of HA to give HAFA graft copolymers showing different grafting degrees (GD), which could be modulated by varying the reaction conditions. A series of HAFA derivatives showing different GD values has been prepared and submitted to an extensive macromolecular and rheological characterization in order to ascertain that the grafting of HA with FA does not degrade the polysaccharide backbone and to evaluate the role of GD in affecting solubility and rheological properties. The results suggested that relatively low GD values were sufficient to confer physical cross-linking capabilities resulting in the features of a strong gel of HAFA dispersions.

Hyaluronan derivatives bearing variable densities of ferulic acid residues

Mendichi R;
2014

Abstract

A synthetic procedure has been developed to conjugate ferulic acid (FA) to an important natural polysaccharide derivative such as hyaluronic acid (HA). The activation of FA with 1,1'-carbonyldiimidazole (CDI) has been investigated. Two reactive intermediates, namely monoimidazolide 2[i.e. (E)-3-(4-hydroxy3-methoxyphenyl)-1-(1H-imidazol-1-yl)prop-2-en-1-one] and bisimidazolide 3[i.e. (E)-4-(3-(1H-imidazol-1-yl)-3-oxoprop-1-enyl)-2-methoxyphenyl 1H-imidazole-1-carboxylate] were characterized from the point of view of their structure and reactivity. The ready isolation of bisimidazolide 3 and its reactivity support its potential usefulness in the feruloylation of molecular or macromolecular materials bearing hydroxyl moieties. Bisimidazolide derivative 3 has been found to be an effective reagent in the feruloylation of HA to give HAFA graft copolymers showing different grafting degrees (GD), which could be modulated by varying the reaction conditions. A series of HAFA derivatives showing different GD values has been prepared and submitted to an extensive macromolecular and rheological characterization in order to ascertain that the grafting of HA with FA does not degrade the polysaccharide backbone and to evaluate the role of GD in affecting solubility and rheological properties. The results suggested that relatively low GD values were sufficient to confer physical cross-linking capabilities resulting in the features of a strong gel of HAFA dispersions.
2014
Istituto per lo Studio delle Macromolecole - ISMAC - Sede Milano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/256474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 19
social impact