One of the most formidable challenges in modern biology is to get a unified view of the various mechanisms governing the behavior and of the causal relationships among different parts of a living system. It is coming clearer nowadays that to get such comprehensive picture computational models embracing different observation levels in space and time have to be formulated to explain the enormous amount of data deriving from -omic high throughput measurements methods. In this article we aim at giving a meaning to the concept of multi-scale modeling in the framework of studies of biological systems with particular interest in understanding human physiology in disease conditions.
Computational biology modeling across different scales
Castiglione Filippo;
2013
Abstract
One of the most formidable challenges in modern biology is to get a unified view of the various mechanisms governing the behavior and of the causal relationships among different parts of a living system. It is coming clearer nowadays that to get such comprehensive picture computational models embracing different observation levels in space and time have to be formulated to explain the enormous amount of data deriving from -omic high throughput measurements methods. In this article we aim at giving a meaning to the concept of multi-scale modeling in the framework of studies of biological systems with particular interest in understanding human physiology in disease conditions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


