In a fractured rock mass, variations in stress and fluid pressure induced by engineering activities can significantly affect the hydrogeological properties. A significant change in fracture transmissivities can also be experienced in the far-field. The simulation of this kind of change requires a Hydro-Mechanical (HM) coupled model. The purpose of this paper is to show how such a model can be used to analyse the evolution of deformation and pressure in a fracture subjected to fluid injection. A 2D BEM-FEM code is used to solve the non-linear system of equations that describe the dependency of transmissivity on local fracture closure. The results of a sensitivity analysis of the essential fracture parameters allow one to gain insight into the importance of the HM models in the framework of the hydrogeology of fractured rock masses. Results obtained from a system of two impervious blocks and a saturated fracture are reported, in order to show the possibilities offered by this technique. © Springer-Verlag 2007.

The hydro-mechanically coupled response of rock fractures

Cravero M;
2007

Abstract

In a fractured rock mass, variations in stress and fluid pressure induced by engineering activities can significantly affect the hydrogeological properties. A significant change in fracture transmissivities can also be experienced in the far-field. The simulation of this kind of change requires a Hydro-Mechanical (HM) coupled model. The purpose of this paper is to show how such a model can be used to analyse the evolution of deformation and pressure in a fracture subjected to fluid injection. A 2D BEM-FEM code is used to solve the non-linear system of equations that describe the dependency of transmissivity on local fracture closure. The results of a sensitivity analysis of the essential fracture parameters allow one to gain insight into the importance of the HM models in the framework of the hydrogeology of fractured rock masses. Results obtained from a system of two impervious blocks and a saturated fracture are reported, in order to show the possibilities offered by this technique. © Springer-Verlag 2007.
2007
Istituto di Geologia Ambientale e Geoingegneria - IGAG
BEM-FEM code
Fractured rock hydrogeology
Hydro-mechanical (HM) coupling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/256497
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? ND
social impact