A novel method for the preparation of PLA bio-nanocomposites containing cellulose nanocrystals (CNCs) is reported. In order to enhance interfacial adhesion and dispersion of nanocrystals into PLA matrix, functionalization of PLA and CNCs by radical grafting of glycidyl methacrylate (GMA) and pre-dispersion of CNCs in poly (vinyl acetate) (PVAc) emulsion were applied. Morphologies, thermal and mechanical properties of nanocomposites for CNCs content of 1e6 wt.% were examined. Addition of functionalized components (PLA-GMA, CNC-GMA) and/or PVAc dispersed CNCs both improved the phase distribution of nanofiller and tensile properties, compared to the binary PLA/CNC nanocomposites. Thermal analyses demonstrated that glass transition, melting temperature and crystallinity of PLA were affected by the PVAc amount. Nanocomposites with PVAc dispersed CNCs exhibited higher thermal resistance than other composites. The filler effectiveness (CFE) was evaluated for all samples on the basis of storage modulus values: CNC-GMA and PVAc dispersed CNCs (3 wt. %) resulted the most effective fillers

Morphology and properties tuning of PLA/cellulose nanocrystals bionanocomposites by means of reactive functionalization and blending with PVAc

Mariano Pracella;
2014

Abstract

A novel method for the preparation of PLA bio-nanocomposites containing cellulose nanocrystals (CNCs) is reported. In order to enhance interfacial adhesion and dispersion of nanocrystals into PLA matrix, functionalization of PLA and CNCs by radical grafting of glycidyl methacrylate (GMA) and pre-dispersion of CNCs in poly (vinyl acetate) (PVAc) emulsion were applied. Morphologies, thermal and mechanical properties of nanocomposites for CNCs content of 1e6 wt.% were examined. Addition of functionalized components (PLA-GMA, CNC-GMA) and/or PVAc dispersed CNCs both improved the phase distribution of nanofiller and tensile properties, compared to the binary PLA/CNC nanocomposites. Thermal analyses demonstrated that glass transition, melting temperature and crystallinity of PLA were affected by the PVAc amount. Nanocomposites with PVAc dispersed CNCs exhibited higher thermal resistance than other composites. The filler effectiveness (CFE) was evaluated for all samples on the basis of storage modulus values: CNC-GMA and PVAc dispersed CNCs (3 wt. %) resulted the most effective fillers
2014
MATERIALI COMPOSITI E BIOMEDICI
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/256505
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact