In the present paper, state-to-state model of vibrational-chemical kinetic and transport processes is applied to study heat and mass transfer in non-equilibrium flows of CO2 and air mixtures under atmospheric entry conditions. Different contributions to the heat flux typical for the state-to-state approach are considered: fluxes due to heat conduction, mass diffusion, thermal diffusion, and diffusion of vibrational energy. For several test cases, vibrational distributions, chemical composition, temperature profiles as well as the transport coefficients and heat flux are calculated along the stagnation line. Various models for diffusion velocities are considered. For a non-catalytic surface, the role of thermal diffusion process is found to be important in some test cases. Prandtl and Schmidt numbers are calculated along the stagnation line, and it is shown that they are essentially non-constant. The influence of Prandtl and Schmidt numbers on the diffusion velocities and heat flux is evaluated

On different contributions to the heat flux and diffusion in non-equilibrium flows

2014

Abstract

In the present paper, state-to-state model of vibrational-chemical kinetic and transport processes is applied to study heat and mass transfer in non-equilibrium flows of CO2 and air mixtures under atmospheric entry conditions. Different contributions to the heat flux typical for the state-to-state approach are considered: fluxes due to heat conduction, mass diffusion, thermal diffusion, and diffusion of vibrational energy. For several test cases, vibrational distributions, chemical composition, temperature profiles as well as the transport coefficients and heat flux are calculated along the stagnation line. Various models for diffusion velocities are considered. For a non-catalytic surface, the role of thermal diffusion process is found to be important in some test cases. Prandtl and Schmidt numbers are calculated along the stagnation line, and it is shown that they are essentially non-constant. The influence of Prandtl and Schmidt numbers on the diffusion velocities and heat flux is evaluated
2014
Istituto di Nanotecnologia - NANOTEC
Vibrational kinetics
Transport properties
Heat flux
Diffusion
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/256668
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact