This study examines the relationships between meteorology and atmospheric deposition chemistry on the basis of 4 years of monitoring in an area of Calabria (Piano Limina) under the National Integrated Programme for the Control of Forest Ecosystems. The location of the area and its low anthropogenic impact meant that phenomena of locally originating alkaline dust deposition could be distinguished from those originating long distances away. The analysis performed on the whole dataset revealed the interaction between temperature, solar radiation and ionic concentrations; the effects of the atmospheric transport of compounds, with lower concentrations during calm conditions; and a marked increase of calcium, alkalinity and pH with winds from W-SW, owing to the transport of alkaline dust from North Africa, in agreement with thematic maps on the synoptic scale. The possible influence of two volcanic events deriving from Stromboli and Etna is discussed. After elimination of the Saharan dust and volcanic events, a multivariate analysis showed the effects of compounds deriving from anthropogenic activities. Sulphate, nitrate and ammonium were closely correlated with NW winds; air masses from this direction come from the continental land mass and the sea, crossing the Calabrian plain before being deposited as precipitation on the Apennine chain. The component from NW also includes a high marine contribution, with maximum values of chloride and sodium.

Discriminating among multiple components affecting bulk atmospheric deposition chemistry: a multivariate approach using data from a forest plot in Calabria (Southern Italy)

Mosello R;
2007

Abstract

This study examines the relationships between meteorology and atmospheric deposition chemistry on the basis of 4 years of monitoring in an area of Calabria (Piano Limina) under the National Integrated Programme for the Control of Forest Ecosystems. The location of the area and its low anthropogenic impact meant that phenomena of locally originating alkaline dust deposition could be distinguished from those originating long distances away. The analysis performed on the whole dataset revealed the interaction between temperature, solar radiation and ionic concentrations; the effects of the atmospheric transport of compounds, with lower concentrations during calm conditions; and a marked increase of calcium, alkalinity and pH with winds from W-SW, owing to the transport of alkaline dust from North Africa, in agreement with thematic maps on the synoptic scale. The possible influence of two volcanic events deriving from Stromboli and Etna is discussed. After elimination of the Saharan dust and volcanic events, a multivariate analysis showed the effects of compounds deriving from anthropogenic activities. Sulphate, nitrate and ammonium were closely correlated with NW winds; air masses from this direction come from the continental land mass and the sea, crossing the Calabrian plain before being deposited as precipitation on the Apennine chain. The component from NW also includes a high marine contribution, with maximum values of chloride and sodium.
2007
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
atmospheric deposition chemistry
meteorology
Southern Italy
North African dust
atmospheric pollutants
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/25682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact