The present paper describes a study on laminin interaction with the surface of two alumina-zirconia composites with different percentages of ZrO2, both with submicrometric grain size. As major molecules within the basement membrane (BM), laminins are important protein fragments for epithelial cell adhesion and migration. On the other hand, alumina-zirconia composites are very attractive materials for dental applications due to their esthetic and mechanical properties. X-Ray photoelectron spectroscopy and atomic force microscopy were used to study the adsorption of two types of laminin, laminin-1 (Ln-1) and laminin-5 (Ln-5), onto the ceramics surfaces. The in vitro cell response was determined by intracellular phosphorylation of major kinases. Ceramics samples functionalized with laminins showed better cellular activation than untreated specimens; furthermore, cellular activation was found to be greater for the composite with higher percentage in zirconia when functionalized with Ln-5, whereas the adsorption of Ln-1 resulted in a greater activation for the alumina-rich oxide.

Alumina-zirconia composites functionalized with laminin-1 and laminin-5 for dentistry: Effect of protein adsorption on cellular response

Faga Maria Giulia;
2014

Abstract

The present paper describes a study on laminin interaction with the surface of two alumina-zirconia composites with different percentages of ZrO2, both with submicrometric grain size. As major molecules within the basement membrane (BM), laminins are important protein fragments for epithelial cell adhesion and migration. On the other hand, alumina-zirconia composites are very attractive materials for dental applications due to their esthetic and mechanical properties. X-Ray photoelectron spectroscopy and atomic force microscopy were used to study the adsorption of two types of laminin, laminin-1 (Ln-1) and laminin-5 (Ln-5), onto the ceramics surfaces. The in vitro cell response was determined by intracellular phosphorylation of major kinases. Ceramics samples functionalized with laminins showed better cellular activation than untreated specimens; furthermore, cellular activation was found to be greater for the composite with higher percentage in zirconia when functionalized with Ln-5, whereas the adsorption of Ln-1 resulted in a greater activation for the alumina-rich oxide.
2014
Istituto per le Macchine Agricole e Movimento Terra - IMAMOTER - Sede Ferrara
Alumina-zirconia composites
Atomic force microscopy
Cell response
Laminins 5 and 1
X ray photoelectron spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/256982
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? ND
social impact