Density based clustering is proposed as an effective way to perform geographic and temporal exploration of messages freely generated within social contexts, in order to reveal and map their latent spatio-temporal structure. The approach is exemplified to identify geographic regions where many geotagged Twitter messages about a given event have been created, possibly in the same time period in the case of aperiodic event, or at regular timestamps in the case of periodic events.

Analisi Spazio-Temporale di Messaggi Twitter per l'Identificazione di Eventi

Gloria Bordogna;Simone Sterlacchini
2014

Abstract

Density based clustering is proposed as an effective way to perform geographic and temporal exploration of messages freely generated within social contexts, in order to reveal and map their latent spatio-temporal structure. The approach is exemplified to identify geographic regions where many geotagged Twitter messages about a given event have been created, possibly in the same time period in the case of aperiodic event, or at regular timestamps in the case of periodic events.
2014
Istituto per la Dinamica dei Processi Ambientali - IDPA - Sede Venezia
Istituto di Geologia Ambientale e Geoingegneria - IGAG
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/257141
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact