We present here a new algorithm for functional site analysis. It is based on four main assumptions: each variation of nucleotide composition makes a different contribution to the overall binding free energy of interaction between a functional site and another molecule; nonfunctioning site-like regions (pseudosites) are absent or ran in genomes; there may be errors in the sample of sites; and nucleotides of different site positions are considered to be mutually dependent. In this algorithm, the site set is divided into subsets, each described by a certain consensus. Donor splice sites of the human protein-coding genes were analyzed. Comparing the results with other methods of donor splice site prediction has demonstrated a more accurate prediction of consensus sequences AG/GU(A,G), G/GUnAG, /GU(A,G)AG, /GU(A,G)nGU, and G/GUA than is achieved by weight matrix and consensus (A,C)AG/GU(A,G)AGU with mismatches. The probability of the first type error, E1, for the obtained consensus set was about 0.05, and the probability of the second type error, E2, was 0.15. The analysis demonstrated that accuracy of the functional site prediction could be improved if one takes into account correlations between the site positions. The accuracy of prediction by using human consensus sequences was tested on sequences from different organisms. Some differences in consensus sequences for the plant Arabidopsis sp., the invertebrate Caenorhabditis sp., and the fungus Aspergillus sp. were revealed. For the yeast Saccharomyces sp. only one conservative consensus.

Analysis of donor splice sites in different eukaryotic organisms

Milanesi L
1997

Abstract

We present here a new algorithm for functional site analysis. It is based on four main assumptions: each variation of nucleotide composition makes a different contribution to the overall binding free energy of interaction between a functional site and another molecule; nonfunctioning site-like regions (pseudosites) are absent or ran in genomes; there may be errors in the sample of sites; and nucleotides of different site positions are considered to be mutually dependent. In this algorithm, the site set is divided into subsets, each described by a certain consensus. Donor splice sites of the human protein-coding genes were analyzed. Comparing the results with other methods of donor splice site prediction has demonstrated a more accurate prediction of consensus sequences AG/GU(A,G), G/GUnAG, /GU(A,G)AG, /GU(A,G)nGU, and G/GUA than is achieved by weight matrix and consensus (A,C)AG/GU(A,G)AGU with mismatches. The probability of the first type error, E1, for the obtained consensus set was about 0.05, and the probability of the second type error, E2, was 0.15. The analysis demonstrated that accuracy of the functional site prediction could be improved if one takes into account correlations between the site positions. The accuracy of prediction by using human consensus sequences was tested on sequences from different organisms. Some differences in consensus sequences for the plant Arabidopsis sp., the invertebrate Caenorhabditis sp., and the fungus Aspergillus sp. were revealed. For the yeast Saccharomyces sp. only one conservative consensus.
1997
Istituto di Tecnologie Biomediche - ITB
donor splice site
classification
accuracy
correlating positions
functional site
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/257229
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 134
social impact