We used the electrospray deposition (ESD) method to fabricate organic photovoltaic devices with poly (3-hexyl-thiophene) (P3HT) and [6,6]-phenyl C-61 butyric acid methyl ester (PCBM) blends of different composition ratios and different organic solvent solution, namely chloroform (CLF) and dichlorobenzene (DCB). The morphology and crystallinity of the active layers were investigated by means of atomic force microscopy (AFM), two-dimensional X-ray diffraction (XRD2) and optical absorption, spreading light on the peculiarities of the present growth technique, involving much faster solvent evaporation and film forming processes, and comparatively much more ordered strutures with less need of thermal annealing processes. The power conversion efficiency (PCE) under AM 1.5G solar simulation obtained for devices deposited from DCB as compared to those deposited from CLF, showed significant improvement, in fair agreement with what was found by the overall characterization of the physical properties.

Film forming properties of electrosprayed organic heterojunctions

2013

Abstract

We used the electrospray deposition (ESD) method to fabricate organic photovoltaic devices with poly (3-hexyl-thiophene) (P3HT) and [6,6]-phenyl C-61 butyric acid methyl ester (PCBM) blends of different composition ratios and different organic solvent solution, namely chloroform (CLF) and dichlorobenzene (DCB). The morphology and crystallinity of the active layers were investigated by means of atomic force microscopy (AFM), two-dimensional X-ray diffraction (XRD2) and optical absorption, spreading light on the peculiarities of the present growth technique, involving much faster solvent evaporation and film forming processes, and comparatively much more ordered strutures with less need of thermal annealing processes. The power conversion efficiency (PCE) under AM 1.5G solar simulation obtained for devices deposited from DCB as compared to those deposited from CLF, showed significant improvement, in fair agreement with what was found by the overall characterization of the physical properties.
2013
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
PLASTIC SOLAR-CELLS
SPRAY DEPOSITION
POLYMER
PERFORMANCE
MORPHOLOGY
BLENDS
VACUUM
LAYERS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/257455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact