Timely and frequently updated information about flood-affected areas and their space-time evolution are often crucial in order to correctly manage the emergency phases. In such a context, optical data provided by meteorological satellites, offering the highest available temporal resolution (from hours to minutes), could have a great potential. As cloud cover often occurs reducing the number of usable optical satellite images, an appropriate integration of observations coming from different satellite systems will surely improve the probability to find cloud-free images over the investigated region. To make this integration effective, appropriate satellite data analysis methodologies, suitable for providing congruent results, regardless of the used sensor, are envisaged. In this paper, a sensor-independent approach (RST, Robust Satellites Techniques-FLOOD) is presented and applied to data acquired by two different satellite systems (Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and Atmospheric Administration platforms and Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Earth Observing System satellites) at different spatial resolutions (from 1 km to 250 m) in the case of Elbe flood event occurred in Germany on August 2002. Results achieved demonstrated as the full integration of AVHRR and MODIS RST-FLOOD products allowed us to double the number of satellite passes daily available, improving continuity of monitoring over flood-affected regions. In addition, the application of RST-FLOOD to higher spatial resolution MODIS (250 m) data revealed to be crucial not only for mapping purposes but also for improving RST-FLOOD capability in identifying flooded areas not previously detected at lower spatial resolution.

A Multi-Sensor exportable Approach For Automatic Flooded Area Detection And Monitoring by a Composite Satellite Constellation

Faruolo M.;Coviello I.;Lacava T.;Pergola N.;
2013

Abstract

Timely and frequently updated information about flood-affected areas and their space-time evolution are often crucial in order to correctly manage the emergency phases. In such a context, optical data provided by meteorological satellites, offering the highest available temporal resolution (from hours to minutes), could have a great potential. As cloud cover often occurs reducing the number of usable optical satellite images, an appropriate integration of observations coming from different satellite systems will surely improve the probability to find cloud-free images over the investigated region. To make this integration effective, appropriate satellite data analysis methodologies, suitable for providing congruent results, regardless of the used sensor, are envisaged. In this paper, a sensor-independent approach (RST, Robust Satellites Techniques-FLOOD) is presented and applied to data acquired by two different satellite systems (Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and Atmospheric Administration platforms and Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Earth Observing System satellites) at different spatial resolutions (from 1 km to 250 m) in the case of Elbe flood event occurred in Germany on August 2002. Results achieved demonstrated as the full integration of AVHRR and MODIS RST-FLOOD products allowed us to double the number of satellite passes daily available, improving continuity of monitoring over flood-affected regions. In addition, the application of RST-FLOOD to higher spatial resolution MODIS (250 m) data revealed to be crucial not only for mapping purposes but also for improving RST-FLOOD capability in identifying flooded areas not previously detected at lower spatial resolution.
2013
Istituto di Metodologie per l'Analisi Ambientale - IMAA
AVHRR
Elbe river 2002 flood
MODIS; optical satellite sensors
RST-FLOOD.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/257513
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact